基于混合离子电解质的有机电化学晶体管在神经突触模拟中的应用

Application of organic electrochemical transistors based on mixed ionic electrolytes in neural synaptic simulation

  • 摘要: 通过将3种离子液体EMIM-TFSI、EMIM-BF4、EMIM-PF6分别与聚合物电解质(PIL, poly(DADMATFSI))混合,构建混合离子电解质体系。将该体系应用于有机电化学晶体管(OECT)中,显著提升了其扫描速率和非易失特性,并实现了生物突触的功能模拟,为神经形态计算提供了新策略。研究采用电学测试、电化学阻抗谱测试以及多层感知器仿真。结果表明,基于EMIM基离子体系的混合电解质在扫描速率方面表现优异,其中EMIM-TFSI的表现尤为突出。基于EMIM-TFSI离子电解质的OECT实现了良好的非易失特性和响应快速的离子传输,成功模拟了生物突触的可塑性。在手写体识别任务中,该OECT的识别率高达84.2%,相较于其他两种体系分别提升了19.1%和12.7%。研究结果为开发高性能OECT神经突触器件提供了新的思路和方法,有望推动神经形态计算技术的发展。

     

    Abstract: This study develops hybrid ionic electrolytes by blending EMIM-TFSI, EMIM-BF4, and EMIM-PF6 with a polymer electrolyte (poly(DADMATFSI), PIL) to enhance the performance of organic electrochemical transistors (OECTs) for neuromorphic computing. The primary objective is to improve ionic transport speed and non-volatility in OECTs, thereby enabling better emulation of synaptic functions. Device performance was systematically evaluated through electrical characterization techniques, electrochemical impedance spectroscopy, and multilayer perceptron simulations. Results demonstrate that hybrid electrolytes based on EMIM cations significantly enhance ionic mobility, with electrolytes containing EMIM-TFSI exhibiting superior overall performance. OECTs incorporating EMIM-TFSI-based electrolytes displayed rapid ionic transport and robust non-volatile properties, effectively mimicking synaptic plasticity. In a handwritten digit recognition task, the OECT device employing EMIM-TFSI-modified electrolytes achieved an accuracy of 84.2%, surpassing the other two electrolyte systems by 19.1% and 12.7%, respectively. This work provides valuable insights and methodologies for advancing high-performance artificial synaptic OECTs, holding promising implications for future neuromorphic computing technologies.

     

/

返回文章
返回