Citation: | DONG Ce, JIANG Ning, WANG Guanran, WANG Jiawei, REN Jianyang, XIE Siyu, LI Ye, DUAN Yu. Advances in the application of atomic layer deposition in the preparation of optoelectronic devices[J]. Journal of Functional Materials and Devices, 2025, 31(3): 213-230. DOI: 10.20027/j.gncq.2025.0017 |
Atomic layer deposition (ALD) is a highly precise thin-film deposition technique that enables the uniform deposition of nanometer-thick films. It is particularly well-suited for fabricating complex microstructures and heterogeneous material interfaces. As optoelectronic devices continue to evolve, ALD technology is finding extensive applications in the fields of optoelectronic materials and dielectric films. Its utility is especially prominent in high-performance solar cells, light-emitting diodes and photoelectric detectors. By precisely controlling the thickness and composition of thin films, ALD technology can markedly enhance the optical and electrical conversion efficiency, as well as the stability of these devices. This article offers a comprehensive review of the advancements in ALD technology for the functional layer of optoelectronic devices. It also discusses the current challenges in research and provides an outlook on the future prospects of ALD technology and its role in optoelectronic devices.
[1] |
ROGERS J A, SOMEYA T, HUANG Y. Materials and mechanics for stretchable electronics[J]. Science, 2010, 327(5973): 1603-1607. DOI: 10.1126/science.1182383
|
[2] |
苏小虎, 谢世钟. 我国光电子技术和器件的发展现状及展望[J]. 中国信息导报, 2001(6): 37-39.
|
[3] |
佚名. 《中国光电子器件产业技术发展路线图(2018—2022年)》发布 [J]. 电子知识产权, 2018(1): 9.
|
[4] |
高会, 黄龙男, 刘彦菊, 等. 形状记忆聚合物在柔性光/电子器件领域的发展与挑战[J]. 复合材料学报, 2018, 35(12): 3235-3246.
|
[5] |
WANG X T, CUI Y, LI T, et al. Recent advances in the functional 2D photonic and optoelectronic devices[J]. Advanced Optical Materials, 2019, 7(3): 180124.
|
[6] |
WANG G, DUAN Y. Efforts of implementing ultra-flexible thin-film encapsulation for optoelectronic devices based on atomic layer deposition technology[J]. SmartMat, 2024, 5(6): e1286. DOI: 10.1002/smm2.1286
|
[7] |
HWANG Y H, KONG S U, KIM C Y, et al. Organic light-emitting fibers and fabrics for truly wearable smart displays: Recent progress and future opportunities[J]. Journal of the Society for Information Display, 2022, 30(10): 727-747. DOI: 10.1002/jsid.1164
|
[8] |
GEORGE S M. Atomic layer deposition: An overview[J]. Chemical Reviews, 2010, 110(1): 111-131. DOI: 10.1021/cr900056b
|
[9] |
ZHANG N, DING W, ZHONG W, et al. Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3[J]. Physical Review B, 1997, 56(13): 8138-8142. DOI: 10.1103/PhysRevB.56.8138
|
[10] |
PUURUNEN R L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process[J]. Journal of Applied Physics, 2005, 97(12): 121301. DOI: 10.1063/1.1940727
|
[11] |
RITALA M, LESKELÄ M, DEKKER J P, et al. Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition[J]. Chemical Vapor Deposition, 1999, 5(1): 7-9. DOI: 10.1002/(SICI)1521-3862(199901)5:1<7::AID-CVDE7>3.0.CO;2-J
|
[12] |
LESKELÄ M, RITALA M. Atomic layer deposition chemistry: Recent developments and future challenges[J]. Angewandte Chemie-International Edition, 2003, 42(45): 5548-5554. DOI: 10.1002/anie.200301652
|
[13] |
RAIFORD J A, OYAKHIRE S T, BENT S F. Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells[J]. Energy & Environmental Science, 2020, 13(7): 1997-2023.
|
[14] |
JOHNSON R W, HULTQVIST A, BENT S F. A brief review of atomic layer deposition: from fundamentals to applications[J]. Materials Today, 2014, 17(5): 236-246. DOI: 10.1016/j.mattod.2014.04.026
|
[15] |
KNEZ M, NIELSCH K, NIINISTÖ L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition[J]. Advanced Materials, 2007, 19(21): 3425-3438. DOI: 10.1002/adma.200700079
|
[16] |
SCHAER M, NÜESCH F, BERNER D, et al. Water vapor and oxygen degradation mechanisms in organic light emitting diodes[J]. Advanced Functional Materials, 2001, 11(2): 116-121. DOI: 10.1002/1616-3028(200104)11:2<116::AID-ADFM116>3.0.CO;2-B
|
[17] |
ITO H, OKA W, GOTO H, et al. Plastic substrates for flexible displays[J]. Japanese Journal of Applied Physics, 2006, 45: 4325. DOI: 10.1143/JJAP.45.4325
|
[18] |
BURROWS P E, BULOVIC V, FORREST S R, et al. Reliability and degradation of organic light emitting devices[J]. Applied Physics Letters, 1994, 65(23): 2922-2924. DOI: 10.1063/1.112532
|
[19] |
LEWIS J S, WEAVER M S. Thin-film permeation-barrier technology for flexible organic light-emitting devices[J]. Ieee Journal of Selected Topics in Quantum Electronics, 2004, 10(1): 45-57. DOI: 10.1109/JSTQE.2004.824072
|
[20] |
WEAVER M S, MICHALSKI L A, RAJAN K, et al. Organic light-emitting devices with extended operating lifetimes on plastic substrates[J]. Applied Physics Letters, 2002, 81(16): 2929-2931. DOI: 10.1063/1.1514831
|
[21] |
JEONG S Y, SHIM H R, Na Y, et al. Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles[J]. NPJ Flexible Electronics, 2021, 5(1): 15. DOI: 10.1038/s41528-021-00112-0
|
[22] |
SATOH R I, RO T, HEO C J, et al. Bi-layered metal-oxide thin films processed at low-temperature for the encapsulation of highly stable organic photo-diode[J]. Organic Electronics, 2017, 41: 259-265. DOI: 10.1016/j.orgel.2016.11.013
|
[23] |
WANG L, RUAN C, LI M, et al. Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer[J]. Journal of Materials Chemistry C, 2017, 5(16): 4017-4024. DOI: 10.1039/C7TC00903H
|
[24] |
CHANG C Y, LEE K T, HUANG W K, et al. High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition[J]. Chemistry of Materials, 2015, 27(14): 5122-5130. DOI: 10.1021/acs.chemmater.5b01933
|
[25] |
YANG Y Q, DUAN Y, DUAN Y H, et al. High barrier properties of transparent thin-film encapsulations for top emission organic light-emitting diodes[J]. Organic Electronics, 2014, 15(6): 1120-1125. DOI: 10.1016/j.orgel.2014.03.007
|
[26] |
ASGARIMOGHADDAM H, CHEN Q, YE F, et al. Zinc aluminum oxide encapsulation layers for perovskite solar cells deposited using spatial atomic layer deposition[J]. Small Methods, 2024, 8(3): 2300995. DOI: 10.1002/smtd.202300995
|
[27] |
SINGH R, GHOSH S, SUBBIAH A S, et al. ALD Al2O3 on hybrid perovskite solar cells: Unveiling the growth mechanism and long-term stability[J]. Solar Energy Materials and Solar Cells, 2020, 205: 110289. DOI: 10.1016/j.solmat.2019.110289
|
[28] |
CHOI E Y, KIM J, LIM S, et al. Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation[J]. Solar Energy Materials and Solar Cells, 2018, 188: 37-45. DOI: 10.1016/j.solmat.2018.08.016
|
[29] |
CHEN Z, WANG J, LIN J, et al. Optimizing the gradient stress sandwich structure thin-film encapsulation for super flexible organic light-emitting devices[J]. Applied Physics Letters, 2023, 123(8): 083506. DOI: 10.1063/5.0156567
|
[30] |
ZHANG J, WANG Z, WANG Z, et al. Advanced multi-material optoelectronic fibers: A review[J]. Journal of Lightwave Technology, 2021, 39(12): 3836-3845. DOI: 10.1109/JLT.2020.3036739
|
[31] |
WANG Z, WANG J, LI Z, et al. Crosslinking and densification by plasma-enhanced molecular layer deposition for hermetic seal of flexible perovskite solar cells[J]. Nano Energy, 2023, 109: 108232. DOI: 10.1016/j.nanoen.2023.108232
|
[32] |
JEONG E G, KWON S, HAN J H, et al. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs[J]. Nanoscale, 2017, 9(19): 6370-6379. DOI: 10.1039/C7NR01166K
|
[33] |
KWON J H, JEON Y, CHOI S, et al. Functional design of highly robust and flexible thin-film encapsulation composed of quasi-perfect sublayers for rransparent, flexible displays[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43983-43992. DOI: 10.1021/acsami.7b14040
|
[34] |
KWON J H, CHOI S, JEON Y, et al. Functional design of dielectric-metal-dielectric-based thin-film encapsulation with heat transfer and flexibility for flexible displays[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 27062-27072. DOI: 10.1021/acsami.7b06076
|
[35] |
LI Z, WANG Z, CHEN Z, et al. Complete stress release in monolayer ALD-Al2O3 films based on mechanical equilibrium homeostasis to realize a bending radius of 1 mm[J]. Soft Matter, 2022, 18(25): 4756-4766. DOI: 10.1039/D2SM00486K
|
[36] |
WEN D, HU J C, YUAN R G, et al. Atomic-scale stress modulation of nanolaminate for micro-LED encapsulation[J]. Nanoscale, 2024, 16(9): 4760-4767. DOI: 10.1039/D3NR06169H
|
[37] |
CHOI Y J, YONG S H, KIM S J, et al. Hygroscopic interlayers for multilayer Al2O3 barrier films[J]. Thin Solid Films, 2019, 690: 137524. DOI: 10.1016/j.tsf.2019.137524
|
[38] |
YONG S H, KIM S J, PARK J S, et al. Flexible carbon-rich Al2O3 interlayers for moisture barrier films by a spatially-resolved atomic layer deposition process[J]. Journal of the Korean Physical Society, 2018, 73(1): 40-44. DOI: 10.3938/jkps.73.40
|
[39] |
JEONG E G, HAN Y C, IM H G, et al. Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs[J]. Organic Electronics, 2016, 33: 150-155. DOI: 10.1016/j.orgel.2016.03.015
|
[40] |
LIM S H, SEO S W, LEE H, et al. Extremely flexible organic-inorganic moisture barriers[J]. Korean Journal of Chemical Engineering, 2016, 33(6): 1971-1976. DOI: 10.1007/s11814-016-0037-2
|
[41] |
KIM S J, YONG S H, CHOI Y J, et al. Flexible Al2O3/plasma polymer multilayer moisture barrier films deposited by a spatial atomic layer deposition process[J]. Journal of Vacuum Science & Technology A, 2020, 38(2): 022418.
|
[42] |
HAN Y C, JEONG E G, KIM H, et al. Reliable thin-film encapsulation of flexible OLEDs and enhancing their bending characteristics through mechanical analysis[J]. Rsc Advances, 2016, 6(47): 40835-40843. DOI: 10.1039/C6RA06571F
|
[43] |
KWON J H, JEON Y, KIM D G, et al. Low-temperature and corrosion-resistant gas diffusion multibarrier with UV and heat rejection capability—A strategy to ensure reliability of organic electronics[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16776-16784.
|
[44] |
QIAN Y, LI J, SHEN J, et al. In-depth physical mechanism analysis of polymer artificial optoelectronic synapse with high endurance and applications of visual system and operant conditioning[J]. Advanced Electronic Materials, 2023, 9(10): 2300135. DOI: 10.1002/aelm.202300135
|
[45] |
SUI N, JI Y, LI M, et al. Photoprogrammed multifunctional optoelectronic synaptic transistor arrays based on photosensitive polymer-sorted semiconducting single-walled carbon nanotubes for image recognition[J]. Advanced Science, 2024, 11(29): 2401794. DOI: 10.1002/advs.202401794
|
[46] |
LEE B H, YOUNG C, CHOI R, et al. Transient charging and relaxation in high-k gate dielectrics and their implications[J]. Japanese Journal of Applied Physics, 2005, 44(4B): 2415-2419.
|
[47] |
KUK S H, KO K, KIM B H, et al. Channel mobility with higher-k doped-HfO2 for CMOS logic[J]. IEEE Transactions on Electron Devices, 2024, 71(11): 6534-6538. DOI: 10.1109/TED.2024.3466843
|
[48] |
KASHYAP H, BENHAM M, SPIEGELMAN J, et al. Ultra high-k HfZrO4Thin films grown by atomic layer deposition using metal-organic and brute HOOH precursors [C] // proceedings of the International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT), Tai Wan: Industrial Technology Research Institute, 2023 : 1-2.
|
[49] |
WEN K Y, HE J Q, JIANG Y, et al. Charge trapping gate stack enabled non-recessed normally off AlGaN/GaN HEMT with high threshold voltage stability[J]. Applied Physics Letters, 2024, 125(14): 142105. DOI: 10.1063/5.0230096
|
[50] |
XU H, DING X, QI J, et al. A study on solution-processed Y2O3 films modified by atomic layer deposition Al2O3 as dielectrics in ZnO thin film transistor[J]. Coatings, 2021, 11(8): 969. DOI: 10.3390/coatings11080969
|
[51] |
WANG X R, ZENG Y X, ZHANG J, et al. Electronic properties of ZrO2 films fabricated via atomic layer deposition on 4H-SiC and Si substrates[J]. Materials Research Express, 2024, 11(1): 015902. DOI: 10.1088/2053-1591/ad1e0a
|
[52] |
WANG W, KIM N Y, LEE D, et al. Operant conditioning reflex implementation in a transparent Ta2O5–3x/Ta2O5−x homo-structured optoelectronic memristor for neuromorphic computing application[J]. Nano Energy, 2024, 119: 109102. DOI: 10.1016/j.nanoen.2023.109102
|
[53] |
LI Z, XIAO W, ZHOU H, et al. Preparation and photoelectric properties of silver nanowire/ZnO thin film ultraviolet detector[J]. Electronic Materials Letters, 2023, 19: 415-423. DOI: 10.1007/s13391-023-00421-8
|
[54] |
WANG S, ZHAO Y, CHENG N, et al. Effects of growth cycle number and annealing temperature on Ga2O3-on-quartz solar-blind photodetectors[J]. Materials Chemistry and Physics, 2023, 306: 128037. DOI: 10.1016/j.matchemphys.2023.128037
|
[55] |
FAN H C, WANG C, XU Y H, et al. Superior performance of ZnGaO solar-blind photodetectors by Implementing TFT structure and tunable ZnO cycle ratio[J]. Materials Today Chemistry, 2024, 38: 102144. DOI: 10.1016/j.mtchem.2024.102144
|
[56] |
SHIN D H, YANG J, MUKHERJEE S, et al. SnS2 thin film with in situ and controllable Sb doping via atomic layer deposition for optoelectronic applications[J]. Advanced Materials Technologies, 2024, 9(21): 2302049. DOI: 10.1002/admt.202302049
|
[57] |
KANG W, AHN J S, LEE J H, et al. Enhanced oxidation resistance and interface stability of atomic-layer-deposited MoNx electrodes via TiN passivation for DRAM cell capacitor applications[J]. ACS Applied Materials & Interfaces, 2024, 16(42): 57446-57456.
|
[58] |
刘恒, 李晔, 杜梦超, 等. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用[J]. 物理学报, 2023, 72(13): 218-226.
|
[59] |
LEE T Y, HSIEH T H, MIAO W C, et al. High-reliability perovskite quantum dots using atomic layer deposition passivation for novel photonic applications[J]. Nanomaterials, 2022, 12(23): 4140. DOI: 10.3390/nano12234140
|
[60] |
KOUSHIK D, VERHEES W J H, KUANG Y, et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture[J]. Energy & Environmental Science, 2017, 10(1): 91-100.
|
[61] |
LU Z, WANG S, LIU H, et al. Improved efficiency of perovskite solar cells by the interfacial modification of the active layer[J]. Nanomaterials, 2019, 9(2): 204. DOI: 10.3390/nano9020204
|
[62] |
GHOSH S, PARIARI D, BEHERA T, et al. Buried interface passivation of perovskite solar cells by atomic layer deposition of Al2O3[J]. ACS Energy Letters, 2023, 8(4): 2058-2065. DOI: 10.1021/acsenergylett.3c00296
|
[63] |
JIA J, JIANG Z, MA S, et al. Novel strategy for high efficient and stable perovskite solar cells through atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2024, 16(3): 3576-3585.
|
[64] |
CHAVAN R D, TAVAKOLI M M, TRAVEDI S, et al. Interface engineering of mesoscopic perovskite solar cells by atomic layer deposition of Ta2O5[J]. ACS Applied Energy Materials, 2021, 4(10): 10433-10441. DOI: 10.1021/acsaem.1c00367
|
[65] |
KOT M, KEGELMANN L, DAS C, et al. Room-temperature atomic-layer-deposited Al2O3 improves the efficiency of perovskite solar cells over time[J]. ChemSusChem, 2018, 11(20): 3640-3648. DOI: 10.1002/cssc.201801434
|
[66] |
KOT M, DAS C, WANG Z, et al. Room-temperature atomic layer deposition of Al2O3: Impact on efficiency, stability and surface properties in perovskite solar cells[J]. ChemSusChem, 2016, 9(24): 3401-3406. DOI: 10.1002/cssc.201601186
|
[67] |
KIM I S, MARTINSON A B F. Stabilizing hybrid perovskites against moisture and temperature via non-hydrolytic atomic layer deposited overlayers[J]. Journal of Materials Chemistry A, 2015, 3(40): 20092-20096. DOI: 10.1039/C5TA07186K
|
[68] |
HULTQVIST A, AITOLA K, SVEINBJÖRNSSON K, et al. Atomic layer deposition of electron selective SnOx and ZnO films on mixed halide perovskite: Compatibility and performance[J]. ACS applied materials & interfaces, 2017, 9(35): 29707-29716.
|
[69] |
ZHU W, ZHANG Z, CHAI W, et al. Band alignment engineering towards high efficiency carbon-based inorganic planar CsPbIBr2 perovskite solar cells[J]. ChemSusChem, 2019, 12(10): 2318-2325. DOI: 10.1002/cssc.201900611
|
[70] |
CAO B, LIU H, YANG L, et al. Interfacial engineering for high-efficiency nanorod array-structured perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33770-33780.
|
[71] |
NAIR S S, THAKUR P, WAN F, et al. Structural modification and analysis of novel inverted perovskite photo-voltaic device by incorporating atomic layer deposition and surface passivation[J]. Solar Energy, 2024, 269: 112366. DOI: 10.1016/j.solener.2024.112366
|
[72] |
WANG Y, JIA S, ZHANG Z. PEDOT and PEDOT: PSS thin-film electrodes: Patterning, modification and application in stretchable organic optoelectronic devices[J]. Journal of Materials Chemistry C, 2023, 11(31): 10435-10454. DOI: 10.1039/D3TC01579C
|
[73] |
李继超, 朱香平, 李相鑫, 等. 应用于微通道板导电层的TiO2∶Al2O3纳米复合薄膜的制备研究[J]. 光子学报, 2023, 52(6): 136-144.
|
[74] |
GORELIKOV D, SULLIVAN N, DE ROUFFIGNAC P, et al. Development of atomic layer deposition-activated microchannel plates for single particle detection at cryogenic temperatures[J]. Journal of Vacuum Science & Technology A, 2014, 32(2): 020605.
|
[75] |
郭俊江, 朱香平, 许彦涛, 等. 原子层沉积微通道板的研究进展[J]. 材料导报, 2020, 34(3): 86-95.
|
[76] |
ELAM J W, MANE A U, LIBERA J A, et al. Synthesis, characterization, and application of tunable resistance coatings prepared by atomic layer deposition [C]// Proceedings of the 9th International Symposium on Atomic Layer Deposition Applications. San Francisco: [s.n.], 2013, 58(10): 249-261 .
|
[77] |
MANE A U, ELAM J W, WAGNER R G, et al. Creation of economical and robust large area MCPs by ALD method for photodetectors[C]// Proceedings of the SPIE Conference on Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVIII. Bellingham: SPIE, 2016, 9968: 99680C.
|
[78] |
张正君, 邱祥彪, 乔芳建, 等. Al2O3/MgO复合膜层对微通道板性能的影响[J]. 表面技术, 2021, 50(6): 199-205.
|
[79] |
CAO W, ZHU B, BAI X, et al. High-sensitivity and long-life microchannel plate processed by atomic layer deposition[J]. Nanoscale Research Letters, 2019, 14: 153. DOI: 10.1186/s11671-019-2983-1
|
[80] |
WANG Y, YAN B, WEN K, et al. The design of the emission layer for electron multipliers[J]. Nanoscale Research Letters, 2021, 16: 151.
|
[81] |
BAILIE C D, CHRISTOFORO M G, MAILOA J P, et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS[J]. Energy & Environmental Science, 2015, 8(3): 956-963.
|
[82] |
ZHANG S, LIU X, LIN T, et al. Atomic layer of ZnO deposition on Ag nanowires for novel electrical applications [C]// Proceedings of the 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO). New York: IEEE, 2019, 507-511.
|
[83] |
SEKKAT A, PAPANASTASIOU D T, GHANI M A, et al. Highly transparent and stable flexible electrodes based on MgO/AgNW nanocomposites for transparent heating applications[J]. Advanced Materials Technologies, 2023, 8(24): 2301143. DOI: 10.1002/admt.202301143
|
[84] |
YANG J, BAHRAMI A, DING X, et al. Encapsulation of locally welded silver nanowire with water-free ALD-SbOx for flexible thin-film transistors[J]. Applied Physics Letters, 2022, 121(16): 163504. DOI: 10.1063/5.0118500
|
[85] |
LIU Y, DING T, CHEN X, et al. Highly conductive alkaline-earth metal electrodes: The possibility of maintaining both low work function and surface stability for organic electronics[J]. Advanced Optical Materials, 2020, 8(15): 2000206. DOI: 10.1002/adom.202000206
|
[86] |
CHEN X, WU D, WANG J, et al. A highly transparent laminated composite cathode for organic light-emitting diodes[J]. Applied Physics Letters, 2021, 119(7): 073301. DOI: 10.1063/5.0057184
|
[87] |
LI P, CHEN Z, FANG K, et al. An electrode based on Ca: Au alloy and atomic layer deposition for a transparent flexible OLED device[J]. Journal of Electronic Materials, 2024, 53(6): 2955-2964. DOI: 10.1007/s11664-024-11064-2
|
[88] |
HOFFMANN L, THEIRICH D, SCHLAMM D, et al. Atmospheric pressure plasma enhanced spatial atomic layer deposition of SnOx as conductive gas diffusion barrier[J]. Journal of Vacuum Science & Technology A, 2017, 36(1): 01A112.
|
[89] |
KWON J H, JEON Y, CHOI K C. Robust transparent and conductive gas diffusion multibarrier based on Mg- and al-doped ZnO as indium tin oxide-free electrodes for organic electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32387-32396.
|
[90] |
PARK J, PHAM H G, KIM J, et al. Highly conductive and flexible transparent hybrid superlattices with gas-barrier properties: Implications in optoelectronics[J]. Applied Surface Science, 2024, 658: 159850. DOI: 10.1016/j.apsusc.2024.159850
|