WANG Jin-tao, LIU Fei, CAO Hui-tong, LI Chen-zheng, SHEN Yan-chao, WANG Yong-sheng, REN Tian-ling. Research status and development trend of silicon resonant MEMS accelerometer[J]. Journal of Functional Materials and Devices, 2025, 31(2): 71-87. DOI: 10.20027/j.gncq.2025.0009
Citation: WANG Jin-tao, LIU Fei, CAO Hui-tong, LI Chen-zheng, SHEN Yan-chao, WANG Yong-sheng, REN Tian-ling. Research status and development trend of silicon resonant MEMS accelerometer[J]. Journal of Functional Materials and Devices, 2025, 31(2): 71-87. DOI: 10.20027/j.gncq.2025.0009

Research status and development trend of silicon resonant MEMS accelerometer

More Information
  • Received Date: January 15, 2025
  • Revised Date: March 17, 2025
  • Available Online: March 20, 2025
  • The silicon resonant MEMS (Micro-Electro-Mechanical System) accelerometer offers several advantages, including small size, high precision, low power consumption, and strong anti-interference capabilities, making it a highly promising high-precision MEMS inertial instrument. It could be widely used in fields such as inertial navigation, seismic monitoring and gravity measurement. This review summarizes and analyses the latest research progress on silicon resonant MEMS accelerometers by major research institutions domestically and internationally, discusses the key technologies for optimizing the performance of these accelerometers, including structural design, process manufacturing, measurement and control circuit, and package technology, and finally provides an outlook on the future development directions of silicon resonant MEMS accelerometers.

  • [1]
    Zhang D, Wei B. Advanced mechatronics and MEMS devices II [M]. Springer Cham, 2017.
    [2]
    Shaeffer D K. MEMS inertial sensors: A tutorial overview[J]. IEEE Communications Magazine, 2013, 51(4): 100-109. DOI: 10.1109/MCOM.2013.6495768
    [3]
    Saunders J K, Goldberg D E, Haase J S, et al. Seismogeodesy using GPS and low-cost MEMS accelerometers: Perspectives for earthquake early warning and rapid response[J]. Bulletin of the Seismological Society of America, 2016, 106(6): 2469-2489. DOI: https://doi.org/10.1785/0120160062
    [4]
    Panescu D. MEMS in medicine and biology[J]. IEEE Engineering in Medicine and Biology Magazine, 2006, 25(5): 19-28. DOI: 10.1109/MEMB.2006.1705742
    [5]
    Grankin M, Khavkina E, Ometov A. Research of MEMS accelerometers features in mobile phone [C]. Proceedings of the 2012 12th Conference of Open Innovations Association (FRUCT), Oulu, Finland, 2012: 1-6.
    [6]
    Zhang Z, Zhang H M, Hao Y C, et al. A review on MEMS silicon resonant accelerometers[J]. Journal of Microelectromechanical Systems, 2024, 33(2): 174-208. DOI: 10.1109/JMEMS.2024.3354235
    [7]
    张霞. 微机械加速度计的研究现状综述[J]. 功能材料与器件学报, 2013, 19(06): 275-283.
    [8]
    董景新. 微惯性仪表: 微机械加速度计 [M]. 清华大学出版社, 2003.
    [9]
    杨博, 阚宝玺, 徐宇新等. 硅微谐振加速度计的研究现状及发展趋势[J]. 导航与控制, 2017, 16(4): 96-106. DOI: 10.3969/j.issn.1674-5558.2017.04.017
    [10]
    Hopkins R, Miola J, Sawyer W, et al. The silicon oscillating accelerometer: A high-performance MEMS accelerometer for precision navigation and strategic guidance applications [C]. Proceedings of the 2005 National Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 2005: 970-979.
    [11]
    丁衡高. 三十年不断发展的MEMS惯性传感器[J]. 导航与控制, 2023, 22(4): 1-4. DOI: 10.3969/j.issn.1674-5558.2023.04.001
    [12]
    Hanse J G. Honeywell MEMS inertial technology & product status [C]. Proceedings of the PLANS 2004 Position Location and Navigation Symposium (IEEE Cat. No. 04CH37556), Monterey, CA, USA, 2004: 43-48.
    [13]
    Gibbons K A. A micromechanical silicon oscillating accelerometer [D]. USA: Department of Mechanical Engineering, Massachusetts Institute of Technology, 1997.
    [14]
    Michel N S. Force multiplier in a microelectromechanical silicon oscillating accelerometer [D]. USA: Department of Mechanical Engineering, Massachusetts Institute of Technology, 2000.
    [15]
    Hopkins R E, Borenstein J T, Antkowiak B, et al. The silicon oscillating accelerometer: A MEMS inertial instrument for strategic missile guidance [C]. Proceedings of the 2005 National Technical Meeting of The Institute of Navigation. San Diego, CA, USA, 2000: 970-979.
    [16]
    Roessig T A, Howe R T, Pisano A P, et al. Surface-micromachined resonant accelerometer [C]. Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97), Chicago, IL, USA, 1997: 859-862.
    [17]
    Su X-P S, Yang H S. Design of compliant microleverage mechanisms[J]. Sensors and Actuators A: Physical, 2001, 87(3): 146-156. DOI: https://doi.org/10.1016/S0924-4247(00)00488-X
    [18]
    Su X-P S, Yang H S. Single-stage microleverage mechanism optimization in a resonant accelerometer[J]. Structural and Multidisciplinary Optimization, 2001, 21(3): 246-252. DOI: https://doi.org/10.1007/s001580050189
    [19]
    Su X-P S, Yang H S. Two-stage compliant microleverage mechanism optimization in a resonant accelerometer[J]. Structural and Multidisciplinary Optimization, 2001, 22(4): 328-334. DOI: 10.1007/s00158-001-0153-3
    [20]
    Seshia A A, Palaniapan M, Roessig T A, et al. A vacuum packaged surface micromachined resonant accelerometer[J]. Journal of Microelectromechanical Systems, 2002, 11(6): 784-793. DOI: 10.1109/JMEMS.2002.805207
    [21]
    Su X-P S, Yang H S, Agogino A M. A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology[J]. IEEE Sensors Journal, 2005, 5(6): 1214-1223. DOI: 10.1109/JSEN.2005.857876
    [22]
    Su X-P S. Compliant leverage mechanism design for MEMS applications [D]. USA: Department of Electrical Engineering, University of California, Berkeley, 2002.
    [23]
    Zou X D, Thiruvenkatanathan P, Seshia A A. Micro-electro-mechanical resonant tilt sensor [C]. Proceedings of the 2012 IEEE International Frequency Control Symposium Proceedings, Baltimore, MD, USA, 2012: 1-4.
    [24]
    Zou X D, Seshia A A. A high-resolution resonant MEMS accelerometer [C]. Proceedings of the 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 2015: 1247-1250.
    [25]
    Zou X D, Seshia A A. Non-linear frequency noise modulation in a resonant MEMS accelerometer[J]. IEEE Sensors Journal, 2017, 17(13): 4122-4127. DOI: 10.1109/JSEN.2017.2703156
    [26]
    Zhao C, Pandit M, Sobreviela G, et al. A resonant MEMS accelerometer with 56ng bias stability and 98ng/√Hz noise floor[J]. Journal of Microelectromechanical Systems, 2019, 28(3): 324-326. DOI: 10.1109/JMEMS.2019.2908931
    [27]
    Mustafazade A, Pandit M S, Zhao C, et al. A vibrating beam MEMS accelerometer for gravity and seismic measurements[J]. Scientific Reports, 2020, 10: 10415. DOI: https://doi.org/10.1038/s41598-020-67046-x
    [28]
    Pandit M, Mustafazade A, Zhao C, et al. An ultra-high resolution resonant MEMS accelerometer [C]. Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Korea (South), 2019: 664-667.
    [29]
    [30]
    Dejaeger R, Lefort O, Jeanneteau M, et al. A low-noise mixed signal ASIC for navigation-grade resonant MEMS accelerometer [C]. Proceedings of the 2022 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Avignon, France, 2022: 1-3.
    [31]
    Shin D D, Chen Y, Flader I B, et al. Epitaxially encapsulated resonant accelerometer with an on-chip micro-oven [C]. Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANS- DUCERS), Kaohsiung, Taiwan, 2017: 595-598.
    [32]
    Comi C, Corigliano A, Langfelder G, et al. A resonant microaccelerometer with high sensitivity operating in an oscillating circuit[J]. Journal of Microelectromechanical Systems, 2010, 19(5): 1140-1152. DOI: 10.1109/JMEMS.2010.2067437
    [33]
    Tocchio A, Caspani A, Langfelder G. Mechanical and electronic amplitude-limiting techniques in a MEMS resonant accelerometer[J]. IEEE Sensors Journal, 2012, 12(6): 1719-1725. DOI: 10.1109/JSEN.2011.2177657
    [34]
    Langfelder G, Caskani A, Tocchio A. Design criteria of low-power oscillators for consumer-grade MEMS resonant sensors[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 567-574. DOI: 10.1109/TIE.2013.2247233
    [35]
    Marra C R, Tocchio A, Rizzini F, et al. Solving FSR versus offset-drift trade-offs with three-axis time-switched FM MEMS accelerometer[J]. Journal of Microelectromechanical Systems, 2018, 27(5): 790-799. DOI: 10.1109/JMEMS.2018.2851143
    [36]
    He L, Xu Y P, Palaniapan M. A CMOS readout circuit for SOI resonant accelerometer with 4μg bias stability and 20μg/√Hz resolution[J]. IEEE Journal of Solid-State Circuits, 2008, 43(6): 1480-1490. DOI: 10.1109/JSSC.2008.923616
    [37]
    Zhao Y, Zhao J, Wang X, et al. A sub-µg bias-instability MEMS oscillating accelerometer with an ultra-low-noise read-out circuit in CMOS[J]. IEEE Journal of Solid-State Circuits, 2015, 50(9): 2113-2126. DOI: 10.1109/JSSC.2015.2431076
    [38]
    Lee J, Rhim J. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control[J]. Journal of Micromechanics and Microengineering, 2012, 22(9): 095016. DOI: 10.1088/0960-1317/22/9/095016
    [39]
    Myers D R, Cheng K B, Jamshidi B, et al. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments[J]. Journal of Micro-Nanolithography MEMS and MOEMS, 2009, 8(2): 021116. DOI: https://doi.org/10.1117/1.3143192
    [40]
    Sobreviela F G, Pandit M, Mustafazade A, et al. A MEMS vibrating beam accelerometer for high resolution seismometry and gravimetry [C]. Proceedings of the 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), Fainesville, FL, USA, 2021: 196-199.
    [41]
    Sobreviela-Falces G, Pandit M, Young D, et al. A navigation-grade MEMS vibrating beam accelerometer [C]. Proceedings of the 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 2022: 782-785.
    [42]
    MV60 Accelerometer [EB/OL]. https://aerospace. honeywell.com/us/en/products-and-services/product/hardware-and-systems/sensors/mv60-accelerometer, 2024-09-24.
    [43]
    Lefort O, Thomas I, Jaud S. To the production of a robust and highly accurate MEMS vibrating accelerometer [C]. Proceedings of the 2017 DGON Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 2017: 1-19.
    [44]
    Comi C, Corigliano A, Langfelder G, et al. A new biaxial silicon resonant micro accelerometer [C]. Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico, 2011: 529-532.
    [45]
    贾玉斌, 郝一龙, 钟莹等. 基于谐振原理的硅微机械加速度计[J]. 微纳电子技术, 2003, 40(7): 271-273. DOI: 10.3969/j.issn.1671-4776.2003.07.080
    [46]
    Jia Y B, Hao Y L, Zhang R. Double tuning-fork resonant accelerometer [C]. Proceedings of the 7th International Conference on Solid-State and Integrated Circuits Technology, Beijing, China, 2004: 1812-1815.
    [47]
    Yin Y G, Fang Z X, Han F T, et al. Design and test of a micromachined resonant accelerometer with high scale factor and low noise[J]. Sensors and Actuators A: Physical, 2017, 268: 52-60. DOI: https://doi.org/10.1016/j.sna.2017.10.043
    [48]
    Fang Z X, Yin Y G, Liu Y F, et al. Low-noise drive of a micromachined resonant accelerometer with separated sensing and actuation [C]. Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 2018: 1-4.
    [49]
    Fang Z X, Yin Y G, Chen C, et al. A sensitive micromachined resonant accelerometer for moving-base gravimetry[J]. Sensors and Actuators A: Physical, 2021, 325: 112694. DOI: https://doi.org/10.1016/j.sna.2021.112694
    [50]
    Ma Y K, Wand S H, Xu W Y, et al. Design and test of MEMS resonant accelerometer with a novel die-attach structure [C]. Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 2023: 1-4.
    [51]
    Lin H, Xu Y P, Qiu A P. Folded silicon resonant accelerometer with temperature compensation [C]. Proceedings of the 2004 IEEE SENSORS, Vienna, Austria, 2004: 512-515.
    [52]
    黄丽斌, 陈卫卫, 杨波等. 不等基频硅微谐振式加速度计[J]. 传感技术学报, 2011, 24(11): 4. DOI: 10.3969/j.issn.1004-1699.2011.11.005
    [53]
    Wang Z J, Xing C Y, Zhang J, et al. Three dimensional wafer-level vacuum packaging of MEMS resonant accelerometer [C]. Proceedings of the 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 2021: 1-4.
    [54]
    裘安萍, 苏岩, 施芹等. 硅微振梁式加速度传感器中微杠杆结构的设计[J]. 传感技术学报, 2006, 19(05B): 2204-2207. DOI: 10.3969/j.issn.1004-1699.2006.05.236
    [55]
    Zhao J, Wang X, Zhao Y, et al. A 0.23 μg bias instability and 1 μg/√Hz acceleration noise density silicon oscillating accelerometer with embedded frequency-to-digital converter in PLL[J]. IEEE Journal of Solid-State Circuits, 2017, 52(4): 1053-1065. DOI: 10.1109/JSSC.2016.2645613
    [56]
    Wang X, Zhao J, Zhao Y, et al. A 0.4 μg bias instability and 1.2 μg/√Hz noise floor MEMS silicon oscillating accelerometer with CMOS readout circuit[J]. IEEE Journal of Solid-State Circuits, 2017, 52(2): 472-482. DOI: 10.1109/JSSC.2016.2609385
    [57]
    Huang J Y, Zhao Y, Xia G M, et al. Systematic modeling of a MEMS resonant accelerometer based on displacement coordination[J]. IEEE Sensors Journal, 2022, 22(7): 6454-6465. DOI: 10.1109/JSEN.2022.3155605
    [58]
    Zhang J, Wu T H, Liu Y D, et al. Thermal stress resistance for the structure of MEMS-based silicon differential resonant accelerometer[J]. IEEE Sensors Journal, 2023, 23(9): 9146-9157. DOI: 10.1109/JSEN.2023.3255415
    [59]
    Wang S D, Zhu W L, Shen Y L, et al. In-plane dual-axis MEMS resonant accelerometer with a uniform sensitivity [C]. Proceedings of the 2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Hiroshima, Japan, 2020: 1-4.
    [60]
    Xu L, Qi Y H, Jiang Z D, et al. Fast frequency relocking for synchronization enhanced resonant accelerometer[J]. Microsystems & Nanoengineering, 2022, 8(1): 93. DOI: https://doi.org/10.1038/s41378-022-00428-5
    [61]
    Zhang Y Q, Wang S Q, Yang Q Q, et al. A novel design of a MEMS resonant accelerometer with adjustable sensitivity[J]. Sensors and Actuators A: Physical, 2024, 379: 115859. DOI: 10.1016/j.sna.2024.115859
    [62]
    王超, 胡启方, 王岩等. 硅微谐振式加速度计结构设计与仿真优化[J]. 导航与控制, 2016, 15(01): 41-46. DOI: 10.3969/j.issn.1674-5558.2016.01.008
    [63]
    王岩, 赵克, 张玲等. 高精度硅微谐振加速度计工程化设计与实现[J]. 中国惯性技术学报, 2016, 24(02): 229-234. DOI: 10.13695/j.cnki.12-1222/o3.2016.02.017
    [64]
    高乃坤, 刘福民, 徐杰等. 工程化硅微谐振加速度计设计与实现[J]. 传感器与微系统, 2024, 43(04): 112-114+118. DOI: 10.13873/J.1000-9787(2024)04-0112-03
    [65]
    Cai P C, Xiong X Y, Wang K F, et al. An improved difference temperature compensation method for MEMS resonant accelerometers[J]. Micromachines, 2021, 12(9): 1022. DOI: 10.3390/mi12091022
    [66]
    Ma L B, Wang J W, Wang Z, et al. An intrinsically temperature-drift suppression phase-locked loop with MEMS voltage-controlled oscillator for micromechanical resonant accelerometer[J]. Journal of Microelectromechanical Systems, 2022, 31(6): 901-911. DOI: 10.1109/JMEMS.2022.3199486
    [67]
    Bie X R, Xiong X Y, Wang Z, et al. Analysis of the thermally induced packaging effects on the frequency drift of micro-electromechanical system resonant accelerometer[J]. Micromachines, 2023, 14(8): 1556. DOI: 10.3390/mi14081556
    [68]
    黄力弘. 硅微谐振加速度计数字锁相驱动与检测技术研究 [D]. 南京: 仪器科学与工程学院, 东南大学, 2018.
    [69]
    裘安萍, 庄瑞芬, 施芹. 硅微谐振式加速度计结构设计与仿真[J]. 中国惯性技术学报, 2009, 17(1): 5.
    [70]
    Wang X, Zhao J, Zhao Y, et al. A 1.2 μg/√Hz-resolution 0.4 μg-bias-instability MEMS silicon oscillating accelerometer with CMOS readout circuit [C]. Proceedings of the 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2015: 1-3.
    [71]
    Yang B, Guo X, Wang Q H, et al. A biologically-inspired hair accelerometer based on resonant sensing [C]. Proceedings of the 2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Lake Como, Italy, 2018: 1-4.
    [72]
    Wang S D, Wei X Y, Zhao Y L, et al. A MEMS resonant accelerometer for low-frequency vibration detection[J]. Sensors and Actuators A: Physical, 2018, 283: 151-158. DOI: 10.1016/j.sna.2018.09.055
    [73]
    ASICs development for MEMS applications: A platform approach [EB/OL]. https://www.slide-share.net/slideshow/asics-for-mems-a-platform-approach/63623604#4, 2024-09-24.
    [74]
    郑辛, 刘飞, 雷明等. 微小型惯性仪表发展现状、趋势以及对行业的影响[J]. 中国惯性技术学报, 2021, 29(6): 701-708. DOI: 10.13695/j.cnki.12-1222/o3.2021.06.001
    [75]
    王雅迪. MEMS谐振式加速度计的技术及发展[J]. 电子元器件与信息技术, 2020, 4(10): 1-2. DOI: 10.19772/j.cnki.2096-4455.2020.10.001
  • Related Articles

    [1]HAN Yuwei, XIA Yuhu, ZHOU Biqing, CAI Minli, WANG Xiaoyue, WU Yaming. Electrostatically driven MEMS optical phase shifter with integrated comb capacitive displacement sensor[J]. Journal of Functional Materials and Devices.
    [2]ZHANG Jin-xi, XIAO Cheng-xiang, PAN Kang-hua, CHEN Li-guo, WANG Bing, LI Gen-zi. Temperature compensation and selection optimization of MEMS pressure sensor based on PSO-RBF[J]. Journal of Functional Materials and Devices, 2025, 31(2): 130-136. DOI: 10.20027/j.gncq.2025.0010
    [3]YING Wenjing, LI Tie, WANG Yuelin. Research on gate control of silicon surface potential[J]. Journal of Functional Materials and Devices, 2024, 30(3): 134-139. DOI: 10.20027/j.gncq.2024.0019
    [4]Tian Zhenzhen, Fu Bo, Li Rui, Li Huijuan, Ge Zhipeng. Research on high bonding strength MEMS wafer-level gold-gold hot-pressing bonding technology[J]. Journal of Functional Materials and Devices, 2024, 30(1): 42-47. DOI: 10.20027/j.gncq.2024.0006
    [5]WANG Ying-da, ZHAO Quan-liang, Sheng Tian-yu, ZHANG Meng-ying, Zhang Huai-wen, WANG Xing-tao, HE Guang-ping. Accelerometer based on niobium-doped lead zirconate titanate piezoelectric ceramic foam[J]. Journal of Functional Materials and Devices, 2023, 29(5): 361-366. DOI: 10.20027/j.gncq.2023.0041
    [6]SONG Ke-yu, LING Bi-yun, CHEN Dong, XU Qiao, WU Ya-ming. Electromagnetic driven MEMS micromirror for large piston stroke[J]. Journal of Functional Materials and Devices, 2023, 29(3): 202-209. DOI: 10.20027/j.gncq.2023.0021
    [7]ZHANG Hong-kuan, ZHAO Quan-liang, ZHANG Meng-ying, ZHAO Lei. A MEMS microcantilever actuated by (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric film[J]. Journal of Functional Materials and Devices, 2023, 29(2): 91-96. DOI: 10.20027/j.gncq.2023.0009
    [8]SHI Dong-fang, LIU Meng, LI Tie, WANG Yue-lin. Emission Stability Research ofA Flat Silicon Cathode[J]. Journal of Functional Materials and Devices, 2022, 28(5): 448-452. DOI: 10.20027/j.gncq.2022.0050
    [9]HU Bo-fan, YOU Chun-yu, XU Bo-rui, MEI Yong-feng. Development and Prospect of Optoelectronic Devices and Flexible Sensors Based on Single-Crystalline Silicon Nanomembrane[J]. Journal of Functional Materials and Devices, 2021, 27(4): 323-339.
    [10]YOU Jin-hao, ZHENG Li, ZHAO Yi-ze, CHENG Xin-hong, YU Yue-hui. Research on Deep Trench Etching and Isolation Process of Silicon-based GaN[J]. Journal of Functional Materials and Devices, 2021, 27(2): 128-132.

Catalog

    Article views (313) PDF downloads (136) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return