Citation: | JU Shanshan, LI Jinxiong, LU Lei, ZHANG Shengdong, WANG Xinwei. High-stability In2O3/InGaZnO dual-channel thin-film transistors[J]. Journal of Functional Materials and Devices, 2025, 31(3): 231-238. DOI: 10.20027/j.gncq.2025.0024 |
This study proposes and fabricates an In2O3/IGZO dual-channel TFT. The results indicate that the bilayer device exhibits excellent electrical characteristics and stability, including a high field-effect mobility of 26.8 cm²·(V·s)−1 and an ultralow subthreshold swing of 90.8 mV·dec−1. The threshold voltage shifts under positive bias stress and negative bias stress are only 29.6 mV and −89.3 mV, respectively. After 50 d of storage in a humid environment, no significant degradation in electrical performance is observed. These outstanding electrical properties and stability are attributed to the high-quality interface formed between the physical-vapor-deposited IGZO layer and the atomic-layer-deposited In2O3 layer. Furthermore, the IGZO layer effectively prevents the interaction between environmental moisture/oxygen and the In2O3 layer. The proposed dual-channel technology offers an effective solution for achieving high-performance oxide thin-film transistors, demonstrating considerable application potential in advanced electronic devices.
[1] |
NOMURA K, OHTA H, TAKAGI A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(7016): 488-492. DOI: 10.1038/nature03090
|
[2] |
崔云怡, 付雅勤, 刘搏, 等. 金属氧化物IGZO薄膜研究进展[J]. 功能材料与器件学报, 2021, 27(5): 456-467.
|
[3] |
SI M, LIN Z, CHEN Z, et al. Scaled indium oxide transistors fabricated using atomic layer deposition[J]. Nature Electronics, 2022, 5(3): 164-170. DOI: 10.1038/s41928-022-00718-w
|
[4] |
GUO M, OU H, XIE D, et al. Critical assessment of the high carrier mobility of bilayer In2O3/IGZO transistors and the underlying mechanisms[J]. Advanced Electronic Materials, 2023, 9(3): 2201184. DOI: 10.1002/aelm.202201184
|
[5] |
LI J, PENG H, YANG H, et al. Abnormal bias instabilities induced by lateral H2O diffusion into top-gate insulator of a-InGaZnO thin-film transistors[J]. IEEE Journal of the Electron Devices Society, 2022, 10: 341-345. DOI: 10.1109/JEDS.2022.3167963
|
[6] |
MYNY K. The development of flexible integrated circuits based on thin-film transistors[J]. Nature Electronics, 2018, 1(1): 30-39. DOI: 10.1038/s41928-017-0008-6
|
[7] |
SI M, CHARNAS A, LIN Z, et al. Enhancement-mode atomic-layer-deposited In2O3 transistors with maximum drain current of 2.2 A/mm at drain voltage of 0.7 V by low-temperature annealing and stability in hydrogen environment[J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1075-1080. DOI: 10.1109/TED.2021.3053229
|
[8] |
DING Y, REN Y, LIU G, et al. UV-treated ZrO2 passivation for transparent and high-stability In2O3 thin film transistor[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3722-3726. DOI: 10.1109/TED.2022.3175674
|
[9] |
CHARNAS A, ZHANG Z, LIN Z, et al. Review—extremely thin amorphous indium oxide transistors[J]. Advanced Materials, 2024, 36(9): 2304044. DOI: 10.1002/adma.202304044
|
[10] |
KANG D, LIM H, KIM C, et al. Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules[J]. Applied Physics Letters, 2007, 90(19): 192101. DOI: 10.1063/1.2723543
|
[11] |
ZHOU X, CAO Y, LI J, et al. Reactively-sputtered AlOx passivation layer for self-aligned top-gate amorphous InGaZnO thin-film transistors[J]. Materials Science in Semiconductor Processing, 2022, 148: 106796. DOI: 10.1016/j.mssp.2022.106796
|
[12] |
LI J, ZHOU F, LIN H-P, et al. Effect of reactive sputtered SiOx passivation layer on the stability of InGaZnO thin film transistors[J]. Vacuum, 2012, 86(12): 1840-1843. DOI: 10.1016/j.vacuum.2012.04.009
|
[13] |
SAHA J K, BUKKE R N, MUDE N N, et al. Remarkable stability improvement of ZnO TFT with Al2O3 gate insulator by yttrium passivation with spray pyrolysis[J]. Nanomaterials, 2020, 10(5): 976. DOI: 10.3390/nano10050976
|
[14] |
HONG S, PARK S P, KIM Y G, et al. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium–gallium–zinc oxide thin film transistors using a solution process[J]. Scientific Reports, 2017, 7(1): 16265. DOI: 10.1038/s41598-017-16585-x
|
[15] |
SHIAH Y S, SIM K, SHI Y, et al. Mobility–stability trade-off in oxide thin-film transistors[J]. Nature Electronics, 2021, 4(11): 800-807. DOI: 10.1038/s41928-021-00671-0
|
[16] |
LI J, ZHANG Y, WANG J, et al. Near-ideal top-gate controllability of InGaZnO thin-film transistors by suppressing interface defects with an ultrathin atomic layer deposited gate insulator[J]. ACS Applied Materials & Interfaces, 2023, 15(6): 8666-8675.
|
[17] |
MATIVENGA M, HAQUE F, BILLAH M M, et al. Origin of light instability in amorphous IGZO thin-film transistors and its suppression[J]. Scientific Reports, 2021, 11(1): 14618. DOI: 10.1038/s41598-021-94078-8
|
[18] |
PAN W, ZHOU X, LI Y, et al. High performance of ZnSnO thin-film transistors engineered by oxygen defect modulation[J]. Materials Science in Semiconductor Processing, 2022, 151: 106998. DOI: 10.1016/j.mssp.2022.106998
|
[19] |
YE Z, YUAN Y, XU H, et al. Mechanism and origin of hysteresis in oxide thin-film transistor and its application on 3-D nonvolatile memory[J]. IEEE Transactions on Electron Devices, 2017, 64(2): 438-446. DOI: 10.1109/TED.2016.2641476
|
[20] |
LI J, JU S, TANG Y, et al. Remarkable bias-stress stability of ultrathin atomic-layer-deposited indium oxide thin-film transistors enabled by plasma fluorination[J]. Advanced Functional Materials, 2024, 34(28): 2401170. DOI: 10.1002/adfm.202401170
|
[21] |
LIU P T, CHOU Y T, TENG L F. Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress[J]. Applied Physics Letters, 2009, 95: 233504. DOI: 10.1063/1.3272016
|
[22] |
ZHANG J, LI X, LU J, et al. Water assisted oxygen absorption on the instability of amorphous InAlZnO thin-film transistors[J]. RSC Advances, 2014, 4(7): 3145-3148. DOI: 10.1039/C3RA44513E
|
[23] |
IM H, SONG H, JEONG J, et al. Effects of the defect creation on the bidirectional shift of threshold voltage with hump characteristics of InGaZnO TFTs under bias and thermal stress[C]//Proceedings of the 2014 21st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). New York: IEEE, 2014: 153-156.
|
[24] |
CHEN H C, KUO C W, CHANG T C, et al. Investigation of the capacitance–voltage electrical characteristics of thin-film transistors caused by hydrogen diffusion under negative bias stress in a moist environment[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40196-40203.
|
[1] | DONG Ce, JIANG Ning, WANG Guanran, WANG Jiawei, REN Jianyang, XIE Siyu, LI Ye, DUAN Yu. Advances in the application of atomic layer deposition in the preparation of optoelectronic devices[J]. Journal of Functional Materials and Devices, 2025, 31(3): 213-230. DOI: 10.20027/j.gncq.2025.0017 |
[2] | CHEN Pengyu, WEN Xintao, HU Zhichen, XI Bin. Research progress on borides growth based on atomic layer deposition technique[J]. Journal of Functional Materials and Devices, 2025, 31(3): 189-199. DOI: 10.20027/j.gncq.2025.0018 |
[3] | WANG Yue, ZHENG Cong, LIU Shi-min. Progresses of the research on spinel high entropy oxides[J]. Journal of Functional Materials and Devices, 2025, 31(1): 22-33. DOI: 10.20027/j.gncq.2025.0005 |
[4] | XI Juan, ZHOU Dayu, LV Tianming. Study on the ferroelectric properties of high Sc doped AlN thin films[J]. Journal of Functional Materials and Devices, 2024, 30(5): 239-246. DOI: 10.20027/j.gncq.2024.0037 |
[5] | LI Yongsu, YI Zejun, SHAO Yaxin, LI Haoxiang, LI Zhenhu. High-Conductivity Hollow Carbon Nanospheres for High-performance Supercapacitors[J]. Journal of Functional Materials and Devices, 2024, 30(3): 126-133. DOI: 10.20027/j.gncq.2024.0018 |
[6] | REN Ming-ke, ZHAO Quan-liang, ZHANG Huai-wen, ZHANG Meng-ying, WANG Xing-tao, HE Guang-ping. A Temperature-insensitive Flexible Graphene Oxide Humidity Sensor[J]. Journal of Functional Materials and Devices, 2023, 29(4): 257-264. DOI: 10.20027/j.gncq.2023.0030 |
[7] | BAI Yu, LI Jun-jun, QIU Qing-qing, CHEN Yang, CHEN Tao, YU Jian. Research on Double-layer Anti-reflection Structures of Silicon Heterojunction Solar Cells with 95% High Bifaciality[J]. Journal of Functional Materials and Devices, 2022, 28(5): 469-474. DOI: 10.20027/j.gncq.2022.0056 |
[8] | SHI Dong-fang, LIU Meng, LI Tie, WANG Yue-lin. Emission Stability Research ofA Flat Silicon Cathode[J]. Journal of Functional Materials and Devices, 2022, 28(5): 448-452. DOI: 10.20027/j.gncq.2022.0050 |
[9] | YU Yue, REN Yuan-wen, BAI Xue-ying, ZHANG Xiao-ke, LIU Shi-min, JIANG Wei-wei, LIU Chao-qian, WANG Hua-lin, WANG Nan, DING Wan-yu. Research progress of high-entropy oxides[J]. Journal of Functional Materials and Devices, 2021, 27(1): 26-35. |
[10] | DU Hongbing, QIN Diancheng, JI Chengguang, CHEN Zhengqing. The Influence of Ambient Temperature and Humidity on Insertion Loss of High Speed PCB[J]. Journal of Functional Materials and Devices, 2020, 26(2): 117-121. |